Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.13.336800

ABSTRACT

Neutralizing monoclonal antibodies (nAbs) to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represent promising candidates for clinical intervention against coronavirus virus diseases 2019 (COVID-19). We isolated a large number of nAbs from SARS-CoV-2 infected individuals capable of disrupting proper interaction between the receptor binding domain (RBD) of the viral spike (S) protein and the receptor angiotensin converting enzyme 2 (ACE2). In order to understand the mechanism of these nAbs on neutralizing SARS-CoV-2 virus infections, we have performed cryo-EM analysis and here report cryo-EM structures of the ten most potent nAbs in their native full-length IgG or Fab forms bound to the trimeric S protein of SARS-CoV-2. The bivalent binding of the full-length IgG is found to associate with more RBD in the "up" conformation than the monovalent binding of Fab, perhaps contributing to the enhanced neutralizing activity of IgG and triggering more shedding of the S1 subunit from the S protein. Comparison of large number of nAbs identified common and unique structural features associated with their potent neutralizing activities. This work provides structural basis for further understanding the mechanism of nAbs, especially through revealing the bivalent binding and their correlation with more potent neutralization and the shedding of S1 subunit.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.21.307439

ABSTRACT

In recognizing the host cellular receptor and mediating fusion of virus and cell membranes, the spike (S) glycoprotein of coronaviruses is the most critical viral protein for cross-species transmission and infection. Here we determined the cryo-EM structures of the spikes from bat (RaTG13) and pangolin (PCoV_GX) coronaviruses, which are closely related to SARS-CoV-2. All three receptor-binding domains (RBDs) of these two spike trimers are in the "down" conformation, indicating they are more prone to adopt this receptor-binding inactive state. However, we found that the PCoV_GX, but not the RaTG13, spike is comparable to the SARS-CoV-2 spike in binding the human ACE2 receptor and supporting pseudovirus cell entry. Through structure and sequence comparisons, we identified critical residues in the RBD that underlie the different activities of the RaTG13 and PCoV_GX/SARS-CoV-2 spikes and propose that N-linked glycans serve as conformational control elements of the RBD. These results collectively indicate that strong RBD-ACE2 binding and efficient RBD conformational sampling are required for the evolution of SARS-CoV-2 to gain highly efficient infection.

SELECTION OF CITATIONS
SEARCH DETAIL